Probiotics in *Clostridium difficile* infection: reviewing the need for a multistrain probiotic

M. Hell\(^1,2\), C. Bernhofer\(^1\), P. Stalzer\(^1,2\), J.M. Kern\(^2\) and E. Claassen\(^3,4\)

\(^1\)Department of Hospital Epidemiology and Infection Control, Salzburg University Hospital, Paracelsus Medical University, Strübergasse 21, 5020 Salzburg, Austria; \(^2\)Division of Medical Microbiology, Institute of Laboratory Medicine, Salzburg University Hospital, Paracelsus Medical University, Strübergasse 21, 5020 Salzburg, Austria; \(^3\)Erasmus Medical Centre, Department of Virology, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands; \(^4\)Athena Institute, VU Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; prof.eric.claassen@gmail.com

Received: 24 May 2012/ Accepted: 4 February 2013
© 2013 Wageningen Academic Publishers

Abstract

In the past two years an enormous amount of molecular, genetic, metabolomic and mechanistic data on the host-bacterium interaction, a healthy gut microbiota and a possible role for probiotics in *Clostridium difficile* infection (CDI) has been accumulated. Also, new hypervirulent strains of *C. difficile* have emerged. Yet, clinical trials in CDI have been less promising than in antibiotic associated diarrhoea in general, with more meta-analysis than primary papers on CDI-clinical-trials. The fact that *C. difficile* is a spore former, producing at least three different toxins has not yet been incorporated in the rational design of probiotics for (recurrent) CDI. Here we postulate that the plethora of effects of *C. difficile* and the vast amount of data on the role of commensal gut residents and probiotics point towards a multistrain mixture of probiotics to reduce CDI, but also to limit (nosocomial) transmission and/or endogenous reinfection. On the basis of a retrospective chart review of a series of ten CDI patients where recurrence was expected, all patients on adjunctive probiotic therapy with multistrain cocktail (Ecologic\(^\circledR\) AAD/OMNiBiOTiC\(^\circledR\) 10) showed complete clinical resolution. This result, and recent success in faecal transplants in CDI treatment, are supportive for the rational design of multistrain probiotics for CDI.

Keywords: *Clostridium difficile*, colonisation of GI tract, colonisation resistance, diarrhoea, intestinal mucosa

1. Introduction

Clostridium difficile infection (CDI) is the most significant bacterial cause of hospital acquired (nosocomial) diarrhoea in adults (Bauer and Van Dessel, 2009). The severity of CDI ranges from mild, usually self-limiting, diarrhoea to fulminant colitis, toxic megacolon and death. *C difficile* colonises and can be isolated from 0-5% of healthy adults (Hautmann *et al.*, 2011; Hell *et al.*, 2012; Moudgal and Sobel 2012; Parkes *et al.*, 2009). However, this can increase to 39% in hospitalised patients (Hickson, 2011; McFarland, 2011) depending on treatment and local conditions, with individuals over the age of 65 being prime targets and age itself being a predisposing factor (referred to as ‘inflamming’ and ‘immunosenescence’; Islam *et al.*, 2012). *C. difficile* is a gram-positive, anaerobic, spore forming bacillus first described in 1935 after isolation from the stool of a healthy newborn (*Bacillus difficilis*; Hall and O’Toole, 1935). Normally, neonates develop a stable microbiota (even when colonised with *C. difficile*) without clinical problems, probably because they are short of (adequately expressed) toxin receptors in the still immature gut. Not until 1978 was *C. difficile* recognised as an opportunistic pathogen for its antibiotic-associated diarrhoea and pseudomembranous colitis. CDI has rapidly increased since the 1990s with alarming rise since 2000 (1999-2007: 25% incidence-increase per year in USA and 750% fatality rate increase in UK; Kelly, 2009) when the novel and fluoroquinolone resistant strain of PCR ribotype 027 spread and accounted for severe disease and over 40% of isolates (Islam *et al.*, 2012).
2012). Currently, CDI incidence rates are still high, but have dropped due to rapid diagnosis, improved infection control practice, root cause analysis, isolation of cases/patients, and restricted use of antibiotics (stewardship). Since the problem with nosocomial infections also lies with spor-contaminated facilities and asymptomatic carriers (high IgG anti-toxin titers; Kyne et al., 2000), transmission reduction, in patients and health-care-workers alike, is an essential element in infection control.

2. *Clostridium difficile* infection (mainly clinically manifested as diarrhoea)

General aspects

The normal microbiota inhibits (opportunistc) pathogen growth and toxin release. This function is reduced after gut-damage and demonstrably so in faecal samples of antibiotic-treated patients (Parkes et al., 2009). Causes for microbiota-damage are shown at level 2 in Figure 1. Risk factors for microbiota damage are for example age, proton pump inhibitors (PPI), tube feeding and parenteral nutrition (Hautmann et al., 2011). After initial disturbance of the resident microbiota other factors can exacerbate the condition by causing an unwanted bacterial overgrowth (Figure 1: 3) resulting in a mild (osmotic) diarrhoea that is usually self limiting (in over 75% of cases). When bacterial toxins are produced in sufficient amounts the gut barrier is compromised (frequently also leading to bloody stools). This will then lead to an inflammatory cascade also involving the nervous system, which intensifies the diarrhoea. The reduction in fermentation also gives a reduction in the production of short chain fatty acids (SCFA) which normally provide energy and stimulation to colonocytes. Again, a large part of these violent episodes of diarrhoea is self limiting. When the immune system, diet and general condition of the patient are optimal, the resident microbiota will return and the cellular damage will be repaired by normal cellular regeneration (from crypt to apex of the villi 3-5 days). Prebiotic fibres like galacto- and fructo-oligosaccharides will accelerate restoration by preferentially creating a beneficial bifidogenic milieu whereas ‘simple’ sugars will enhance growth of opportunistic pathogens (Kelly, 2008). Similar beneficial effects as with prebiotics (specific vegetables in diet and/or supplements like inulin) can be observed by oral intake of billions probiotic bacteria). Since the bacteria in the gut will always be counteracted by the (healthy) immune system (gut associated lymphoid tissue) only those bacteria that were considered ‘self’ in early life will persist in view of the gut immune tolerance they enjoy. Hence, the same profile fingerprint of bacteria will emerge after a dysbiosis episode. In any case, the balance is usually restored after several weeks. Since probiotics do not permanently colonise the gut and are non-invasive, they will disappear (average half life 5-7 days) when no longer ingested (Mercenier et al., 2000).

Clostridium difficile specific aspects

CDI has a number of specific properties making it the major nosocomial diarrhoea in adults. Firstly, CDI is particularly known for its specific risk factors age, use of antibiotics and hospitalisation (Hickson, 2011). When properly diagnosed, CDI is usually treated by withdrawal of the precipitating antibiotic, avoidance of anti-peristaltic agents and treatment with metronidazole or vancomycin for non-metronidazole-responders (Cohen et al., 2010) or severe cases. Still, up to a quarter of all patients will develop recurrent CDI (Hickson 2011), with those that experience such a relapse having a 50-60% risk of further recurrence (Bauer and Van Dissel, 2009). This is particularly so because of hypervirulent strains (like ribotypes 027, 078 and 106) with more severe disease, increased mortality, resistance to fluoroquinolones and higher relapse rates (Cartman et al., 2010). Additional mortality by these hypervirulent strains is calculated to be between 6-12% (Parkes et al., 2009). Although some of these recurrent cases are due to exogenous re-infection by ongoing exposure to spores in the environment, most exhibit the same bacterial strain of the first episode. Evidently, neither the first antibiotic nor vancomycin restored the gut microbiota, nor did they reduce the exposure to spores in the environment, the co-morbidity or other CDI specific host risk factors (Bauer and van Dissel, 2009). Fidaxomicin, a recently available anti-CDI drug has a very specific mode of action against *C. difficile* and does, therefore, less harm to the gut microbiota than any other comparable anti-*C. difficile* antibiotics (Tschudin-Sutter et al., 2012). Fidaxomicin is also described as preserving the intestinal microbiome during and after treatment of CDI and reducing both toxin reexpressions and recurrence of CDI (Louie et al., 2012).

CDI starts with ingested (or resident) spores germinating in the colon and the bacteria establishing/maintaining themselves through specific adhesion (Islam et al., 2012). CDI is toxin mediated (Figure 1: 4). Two large (approx. 300 kDa) protein exotoxins, TcdA and TcdB, are produced, of which TcdB is clearly the main virulence factor as demonstrated by TcdA-veB+ve strains. The hypervirulent strain ribotype 027 produces an additional ‘binary’ toxin (CDT, an actin-specific ADP ribosyltransferase) whose role is not yet established, although it potentiates TcdA/B toxicity (Tschudin-Sutter et al., 2012). TcdA binds to the apical side of gut epithelial cells (to gp96, a *C. difficile* toxin A receptor) and causes cytoskeletal modification and tight junction disruption. This in turns facilitates binding of TcdB to the basal lamina leading to vascular permeability, release of neuropeptides (substance P, CGRP/calcitonin gene-related peptide and neurotensin), recruitment of white blood cells, pro-inflammatory cytokines (leukotrienes,
Probiotics in Clostridium difficile infection

Beneficial Microbes 4(1) 41

PGE₂, TNFα, IL-1, IL-6) epithelial cell apoptosis, pseudomembrane (PM-colitis) formation, connective tissue degradation, fluid exudation/secretion and subsequently diarrhoea and frequently also bloody stools. In short, C difficile is pathogenetically unique in establishing a bona fide necro-inflammatory reaction activating mast cells, nerves, vascular endothelium and immune cells in addition to disruption of tight junctions (Hodges and Gill, 2010).

3. Probiotics for prevention and treatment of diarrhoea

Maintenance of homeostasis and luminal effects

As shown in Figure 2, both the commensals in a normal microbiota as well as ingested probiotic products will assist in defending the gut against colonisation by exogenous microorganisms. This mechanism is called colonisation resistance (Wolvers et al., 2010). In a single cell to single...
Table 1. Contributions of electrogenic versus electroneutral components of ion absorption at the basis of *Clostridium difficile* diarrhoea mechanisms,a,b

<table>
<thead>
<tr>
<th>Diarrhoea because of</th>
<th>Mechanism through</th>
<th>Molecules involved</th>
<th>Relevant for C. difficile</th>
<th>Role of probiotics c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased secretion of electrolytes (CLCA)(^1)</td>
<td>Overproduction of cAMP gives activation of protein kinase A and opens CFTR and CLCA(^2)</td>
<td>CFTR and CLCA(^1)</td>
<td>Increased Cl(^-) secretion through neuropeptides (substance P, CGRP and neurotensin)</td>
<td>Bifidobacteria dose dependently inhibit (CFTR) Cl(^-) secretion(^3) and promote intestinal homeostasis one step downstream epithelial Ca(^{2+}) mobilisation</td>
</tr>
<tr>
<td>Reduced sodium absorption</td>
<td>Luminal membrane Na(^+) and H(^+) exchange isoforms(^1,3) NHE3 (aka SLC9A3)</td>
<td>TcdB inactivates Rh-kinase inhibitor altering activity and distribution of NHE3(^4)</td>
<td>Butyrate produced by probiotics increases NaCl absorption by NHE3 stimulation and transcripion(^5)</td>
<td></td>
</tr>
<tr>
<td>Reduced chloride absorption, increased HCO(_3^-) secretion</td>
<td>Apical anion exchange mediating Cl(^-) absorption (seen in congenital chloride diarrhoea)</td>
<td>DRA</td>
<td>As for other infectious diarrhoea</td>
<td>LPA or Lactobacillus acidophilus increase surface expression of DRA giving increased chloride absorption(^6,7)</td>
</tr>
<tr>
<td>Reduced water absorption</td>
<td>ENS links directly with AQP(^3) AQP, ANG, OXT</td>
<td>Hypothesis: lactic acid upregulates(^9) AQP4, which facilitates oedema elimination in diseases causing vasogenic(^10) (vessel leak) oedema</td>
<td>Consumption of L. acidophilus led to higher gene expression of water and ion homeostasis regulators(^11)</td>
<td></td>
</tr>
<tr>
<td>Reduced sodium and glucose absorption</td>
<td>Inactivation of SGLT-1</td>
<td>SGLT-1</td>
<td>As for other infectious diarrhoea(^12)</td>
<td>Microbiota influences expression of SGLT-1(^13)</td>
</tr>
<tr>
<td>Loss of barrier function, increased paracellular permeability</td>
<td>Altered tight junctions(^14,15) claudin-1, ZO-1, ZO-2, occludin</td>
<td>TcdA modifies cytoskeleton and disrupts tight junctions</td>
<td>Probiotics upregulate genes coding for de novo synthesis of claudin and occludin(^16,17)</td>
<td></td>
</tr>
</tbody>
</table>

\(\text{a Abbreviations used: ANG = angiogenin; AQP = aquaporins; CFTR = cystic fibrosis transmembrane conductance regulator; CLCA = chloride channel accessory; DRA = down regulated in adenoma; ENS = enteric nervous system; LPA = lysophosphatidic acid; NHE3 = Na/H exchanger3; OXT = oxytocin; SGLT-1 = sodium D-glucose cotransporter; TcdA = toxin A; ZO = zonula occludens (zonulin).}\)

\(\text{b Specific references given as superscript letters: 1\) Hodges and Gill, 2010; 2\) Oland et al., 2012; 3\) Heuvelin et al., 2010; 4\) Hayashi et al., 2004; 5\) Malakooti et al., 2011; 6\) Borthakur et al., 2008; 7\) Singla et al., 2011; 8\) Ishihara et al., 2008; 9\) Morishima et al., 2008; 10\) Saadoun and Papadopoulos., 2010; 11\) Van Baarlen et al., 2011; 12\) Dean et al., 2006; 13\) Swartz et al., 2012; 14\) Ulluwishewa et al., 2011; 15\) Veshnyakova et al., 2012; 16\) Karczewski et al., 2010; 17\) Wells, 2011.}\)

\(\text{c Strains as examples, specifics in references/primary papers.}\)
Probiotics in Clostridium difficile infection

Beneficial Microbes 4(1) 43

Defence by affecting numbers and/or composition of the colonising microbiota. As an integral part of the immediate response innate immune system, Paneth cells produce defensins and other antibiotic peptides and proteins. Because of their juxtaposition to epithelial progenitor (stem) cells at the base of the crypts of Lieberkühn and very high local concentrations of defensins, they are probably involved in maintaining gut renewal. Reduced Paneth cell defensin expression can predispose for pathology, seen in necrotising enterocolitis and ileal Crohn’s disease (Salzman et al., 2007).

Probiotics can enhance release of defensins, e.g. as demonstrated in acute infectious enteritis (see Sherman et al., 2009). Trefoil-factors are anti-bacterial peptides that are also secreted by mucin-producing cells in response to various noxious stimuli (Sherman et al., 2009) or

Figure 2. Microbiota, gut mechanisms and cells involved in prevention or reversal of diarrhoea.

IFN = interferon; NFκβ = nuclear factor kappa beta; IL = interleukin; TGF = transforming growth factor; MAMPS = microbe-associated molecular patterns; TRL = Toll-like receptor; RLR = retinoic acid inducible gene 1 like receptor; NRL = nucleotide oligomerisation domain like receptor; IG = immunoglobulin; HEV = high endothelial venules.
probiotics (Van Huynegem et al., 2009). The enhanced mucus layer overlying the epithelial lining of the gut serves as an additional antibacterial shield, hampering binding of the pathogens (Sherman et al., 2009). Probiotics, such as Lactobacillus plantarum, can upregulate MUC2 and MUC3 genes, which code for mucus-protein production in humans. Mucus and trefoil factors work in concert with each other and many of the more than twelve hundred (!) antimicrobial peptides nature can call upon for host defence (Nakatsuji and Gallo, 2012). The gut wall exhibits a large degree of luminal chemo-sensitivity sensing a vast array of signals ranging from nutrients, chemicals, mechanical factors and microorganisms (Nguyen, 2012; Raybould, 2012). Entero-endocrine cells are specialised luminal sensors as are sub-epithelial nerve fibres that will respond to those compounds freely diffusing across the epithelium (e.g. SCFAs; Dockray, 2003).

Another direct relation between the nervous system and the gut is the presence, and exquisite sensitivity to probiotics, of opioid and cannabinoid receptors enabling manipulation of visceral perception (including pain; Rousseaux et al., 2007). As described in detail in Table 1, an intimate association between sensing, the nervous system, and ion and water homeostasis exist (Hodges and Gill, 2010). Sensing is also an integral part of the immune system via pattern recognition receptors (PRR) expressed on immune cells like dendritic cells and other tissues like the gut epithelium. PRRs recognise evolutionary conserved molecular structures known as microbe-associated molecular patterns or pathogen-associated molecular patterns and signal effector mechanisms in the innate immune system (Olive, 2012). PRRs can be divided in three families: Toll-like receptors, retinoic acid inducible gene 1 like receptors recognising viruses, and nucleotide oligomerisation domain like receptors. All are three families amenable to modulation by probiotics (Feleszko et al., 2006), excellently reviewed and described in their innate and adaptive immunity context by Wells (2011).

Based on these and other sensing mechanisms, relevant signal transduction pathways (see Figure 2 for NFkappaB and mitogen-activated protein kinase) can be switched on after recognition of pathogens leading to a cascade of events ending in the production of proinflammatory cytokines (as described above, cytokine storm) for defence or anti-inflammatory cytokines when tolerance is needed (Bron et al., 2011; Hodges and Gill, 2010; Sherman et al., 2009; Van Baarlen et al., 2009). Selected probiotic strains and environmental markers of microbial exposure (Ege et al., 2011) can selectively modulate these pathways and enhance or suppress cytokine production switching the immune system between better defence (pathogens, tumour cells) and/or tolerance (to avoid allergy and auto-immunity; Guarner et al., 2006;). M (microfold) cells, exclusively located over the Peyer’s patches, in the gut epithelium continuously sample the lumen for particles like microorganisms, transferring antigens to dendritic cells in the submucosa. Intraepithelial T and B lymphocytes produce cytokines (T) and immunoglobulins (B; antibodies) of IgA isotype mainly (Bron et al., 2012). Finally, the gut barrier, formed by only a single layer of epithelial cells, is critically dependent on tight junctions separating the gut lumen from the lamina propria. Bacteria from the microbiota and probiotics alike target the tight junction proteins and thereby modulate the barrier and thus permeability (Ulluwishewa et al., 2011).

Submucosal effects

The ‘business end’ of the gut immune system is mainly present in the lumen as sIgA immunoglobulin in the mucus layer on top of the epithelial cells and as intraepithelial lymphocytes. However, the actual initiation of the immune response takes place in the Peyers’s patches, large lymphocyte follicles in the submucosa. After the antigens are presented (by dendritic cells in villi or through M cells) and T and B cells are recruited the actual immune response is started in the draining mesenterical lymph nodes from where the activated T and B cells are transported back to the villi via the blood vessels (Brandtzæg and Pabst, 2004; Bron et al., 2012). This seemingly elaborate mechanism ensures that the villi have more room for their primary function, uptake of nutrients and water, and that specific immune effector-cells can be initiated at one single site (after pathogen recognition) and then be evenly redistributed over the entire length of the gut, thereby providing uniform specific protection and memory. The entire process is critically controlled by dendritic cells and effector-cells are always under control of T regulator cells, ensuring not only a decent start of the specific response but also, and maybe more importantly, a timely end to the response (Wells, 2011) avoiding self-inflicted pathology (Chinen and Rudensky, 2012; Van Driel and Ang, 2008).

Clinical use of probiotics

With over 700 clinical trials in healthy volunteers and patients one might conclude that probiotics have come of age and their use is as evident as the mechanisms they modulate such as described above. Unfortunately, effects of probiotics are always dose and strain specific making comparison of clinical results with different preparations very difficult. In an effort to at least indicate in which areas probiotics can be recommended on scientific grounds, Floch et al. (2011) made an update of existing data. In their analysis they listed evidence as: ‘A = strong positive studies in literature’, ‘B = positive-controlled studies, but some negative studies not supporting the primary outcome’ and ‘C = some positive studies, but not enough for certainty’. They concluded that A claims can only be
given for infectious diarrhoea in children, antibiotic-associated diarrhoea (AAD), pouchitis, ulcerative colitis (maintenance), immune response and atopic eczema. In most of these clinical indications a combination of probiotic strains instead of a monospecific single strain was used (Chapman et al., 2011).

Clinical use of probiotics in Clostridium difficile infection

In the studies by Floch et al. (2011), prevention of (recurrent) C. difficile associated diarrhoea was given a disappointing B/C marking and only one bacterial product with one strain (Lactobacillus rhamnosus GG; ATCC 53103) was included. Consequently, even with a substantial number of studies (Malaguarnera et al., 2012) and very positive meta-analysis showing probiotics are associated with a reduction in AAD (Hempel et al., 2012; Videlock and Cremoni, 2012), a reliable probiotic formulation for CDI has still to be clinically (significance in intent-to-treat) proven. Still a positive attitude towards the future success of anti-CDI probiotics can be seen and specific recommendations for use are given (Hickson, 2011). Single strain versus multistrain preparations are still discussed controversially (Chapman et al., 2011). There is some evidence for single strain applications, such as non-toxigenic C. difficile strains, for treatment (Phase 2 studies) based on the idea of a monoclonal pathogenesis of toxigenic C. difficile (Hell et al., 2011). But a number of factors have to be taken into account when developing a new probiotic formulation in this field, these being: age of the host, optimal dose, stability, safety, mucosal adherence, gastric acid and bile resistance, matrix of delivery, specific strains, interaction within combination products and optimal duration of treatment (Verna and Lucak, 2010). The high efficiency of faecal microbiota transplantation is a fundamental fact that can be relied on in probiotic CDI treatment (Brandt., 2012; Tschuddin-Sutter et al., 2012). Based on this, a recent metanalysis by Johnston et al., 2012) and the fact that C. difficile has unique necro-inflammatory pathogenesis, as described in detail in Section 2, we postulate that only a multistrain cocktail (resembling a 'healthy' human microbiota) could come close to addressing all mechanical needs (Figure 2 and Table 1) in the CDI setting.

4. Design and methods of a clinical study

For the reasons listed in the previous section a product (Ecologie®AAD, Winclove Bio Industries BV, Amsterdam, the Netherlands) was assembled consisting of equal ratios of the following 10 bacterial strains with a total dose of 5 g/sachet and of 10^9 cfu/g: Bifidobacterium bifidum W23, Bifidobacterium lactis W18, Bifidobacterium longum W51, Enterococcus faecium W 54, Lactobacillus acidophilus W37 and W55, Lactobacillus paracasei W20, L. plantarum W62, L. rhamnosus W71, Lactobacillus salivarius W24 and a mixture of 5% mineral elements, in Austria branded as OMNiBiOTiC® 10 AAD)).

Case definition

A patient was identified as a laboratory confirmed, symptomatic CDI patient who received adjunctive probiotic therapy at the time when oral metronidazole or vancomycin was initiated. Participants consumed sachets containing 5 g Ecologie®AAD twice daily. Patients were studied by queering surveillance data, consecutively followed by interviewing staff by phone. Retrospectively, medical records were reviewed to ascertain clinical signs of CDI, therapy, medical history and outcome.

Severe CDI was defined by clinical signs of severe colitis and laboratory findings confirming a severe course; recurrent CDI was defined as described by Bauer et al. (2009). The decision to initiate adjunctive probiotic therapy was made by the individual attending physician in cooperation with an infectious diseases consultant. On the basis of retrospective chart review all patients met the following criteria: diarrhoea, antibiotic treatment with metronidazole or vancomycin and multistrain probiotics.

Clinical setting and inclusion criteria

A 1,200 bed, tertiary care, university hospital (five different clinical departments) participated during the period from 1 November 2010 to 31 July 2011. After laboratory proof of C. difficile (toxigenic culture), a standardised interview was carried out for each patient, asking for date and reason of admission, clinical symptoms, onset of clinical symptoms, underlying diseases, comorbidities and antibiotic history. If the patient was selected for the study, patients’ records were searched for antibiotic history, additional medication like PPIs and cortison, fever, leukocyte counts, C-reactive protein (CRP), radiology and endoscopy results. A follow-up was done after six month.

Treatment description and definition of resolution

To test whether the product was actually performing and no strain to strain inhibitory effects were introduced by combining so many strains, a pilot study including a series of ten elderly patients, complemented by a detailed chart review, was performed. Resolution was defined as no further laboratory signs of inflammation and/or fever, and reduction of stool frequency less than 3 times/24 h for at least 72 h according to Bauer et al. (2009).

All patients received oral vancomycin 125 mg qid for at least 10 days, 8 patients received additionally oral metronidazole 500 mg tid, 4 patients got a combination of oral vancomycin and iv treatment with metronidazole, and 9 were still under concomitant iv treatment with other antibiotics because of their underlying disease.
A complementary epidemiological investigation was done outside the hospital CDI surveillance system for both the period of the investigated cases and for the time period 2009-2011 (Table 2) to gain more background information of the local/hospital epidemiological situation.

5. Results of a clinical study

Table 2 clearly shows that the caseload of CDI is proportionally much higher in the group under 70 years of age, with 521 cases under 70 years of age versus 452 in the group over 70. In absolute numbers, the proportion of Clostridium difficile fatal cases (causative and contributive cases) was 21 (<70) over 29 (>70), but in a relative way this was 4% over 6.5% or a 63% increase in the >70 age bracket. No differences could be seen per 5 year age bracket >70. This clearly shows that the Salzburg cohort behaves as described in the literature (reviewed in Islam et al., 2012): relatively more CDI in older people and absolutely (and relatively) more deaths contributed to or caused by C. difficile in >70 years. From this base line situation we selected the cases.

Patients characteristics, risk factors, and clinical presentation

The demographic characteristics, comorbidities, and clinical presentations of all patients are listed in Table 3. The mean age of the patients was 82 years (range 72-89); the majority were men (7 out of 10). All patients were hospitalised at the onset of CDI. Only one out of the 10 patients had no history of antimicrobials; 9 of 10 received antimicrobial medication (range 1 to 6, mean 3.7 different antibiotics) in the last three months before onset of CDI. The most frequently administered antibiotics were ciprofloxacin and amoxicillin+clavulanic acid (each 5 out of 9 patients) and piperacillin+tazobactam (4 out of 9 patients). 8 patients got PPIs and/or cortison before and during the CDI-therapy. 4 out of 10 patients had received different single-strain probiotics before. All but one patient suffered from severe underlying diseases like malignancies, renal failure or chronic vascular diseases. 6 of 10 patients showed fever (defined as body temperature ≥38 °C at the time the stool samples were taken). Mean leukocyte count was 13,500 (range 4,200 to 25,500) and mean CRP was 13.7 g/dl (range 3 to 26.2 g/dl).

Laboratory and radiography results

In all patients, CDI had been confirmed by laboratory results (stool culture for C. difficile and toxin A- and B-positive ELISA test) before they were included in the survey. Radiography and endoscopy brought no further useful information: in 3 cases abdominal X-rays were done but without description of the colon; in one case an abdominal CT scan was performed, but, as the patient was already known for chronic radiogenic colitis, there was no valid information about CDI. In 2 out of 10 cases endoscopy was initiated. One showed no sign of enteritis, the other was aborted because of bleeding and stenosis.

Case reports

From the 10 patients who received adjunctive probiotic therapy 3 patients were selected to represent our case series population; these patients are discussed below. The demographic characteristics, comorbidities, and clinical presentations of all patients are listed in Tables 3 and 4. None of this three cases experienced a relapse for more than six months, however, as described below, one of them (patient 1) had already been treated with a multistrain probiotic for a short time period before and had a relapse two weeks later.

Patient 1 (Case 3 in Tables 3 and 4)

A 72 year-old male with tuberculosis, recurrent glomerulonephritis, and urinary tract infection (UTI) (due to extended spectrum β-lactamase producing Escherichia coli) who had been treated with hydrocortison and several antibiotics (ciprofloxacin, rifampicin, amoxicillin+clavulanic acid and sulfonamide+trimethoprim) for six months was admitted to our hospital with the second relapse of CDI. He tested positive for C. difficile (ribotype 413) in the stool specimen taken at admission. After an initial treatment with metronidazole he was treated with vancomycin and a multistrain probiotic. Three days later, the patient experienced full clinical resolution. Even after further treatment with ciprofloxacin and pivmecillinam for more than a month, no CDI-relapse occurred.
Table 3. Demographic characteristics, underlying disease, manifestation of Clostridium difficile infection (CDI) (primary episode, first or second relapse) and risk factors.

<table>
<thead>
<tr>
<th>Case ID</th>
<th>Age</th>
<th>Sex</th>
<th>Underlying disease</th>
<th>Primary CDI episode</th>
<th>Relapse 1</th>
<th>Relapse 2</th>
<th>Antimicrobials history</th>
<th>Corticosteroids/PPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88</td>
<td>m</td>
<td>CDI</td>
<td>x</td>
<td></td>
<td></td>
<td>None</td>
<td>PPI</td>
</tr>
<tr>
<td>2</td>
<td>89</td>
<td>f</td>
<td>uterus carcinoma</td>
<td>x</td>
<td></td>
<td></td>
<td>Unknown antibiotic, Ciprofloxacin</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>m</td>
<td>glomerulonephritis</td>
<td></td>
<td></td>
<td></td>
<td>Ciprofloxacin, AmoxClav, Rifampicin, SulfTrim</td>
<td>Cortison</td>
</tr>
<tr>
<td>4</td>
<td>85</td>
<td>f</td>
<td>epilepsy</td>
<td>x</td>
<td></td>
<td></td>
<td>Cefazolin, PipTaz</td>
<td>PPI</td>
</tr>
<tr>
<td>5</td>
<td>85</td>
<td>m</td>
<td>bladder carcinoma</td>
<td>x</td>
<td></td>
<td></td>
<td>Ciprofloxacin, PipTaz, Ceftriaxion, SulfTrim, Vancomycin, AmoxClav</td>
<td>PPI</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>m</td>
<td>bronchitis, recurrent urinary tract infection</td>
<td>x</td>
<td></td>
<td></td>
<td>Ciprofloxacin, Levofloxacin, SulfTrim</td>
<td>PPI</td>
</tr>
<tr>
<td>7</td>
<td>76</td>
<td>m</td>
<td>renal replacement therapy</td>
<td>x</td>
<td></td>
<td></td>
<td>Ciprofloxacin, AmoxClav, PipTaz</td>
<td>Cortison, PPI</td>
</tr>
<tr>
<td>8</td>
<td>79</td>
<td>m</td>
<td>endocarditis, CDI</td>
<td></td>
<td></td>
<td></td>
<td>Clarithromycin, Moxifloxacin, Metronidazole</td>
<td>Cortison, PPI</td>
</tr>
<tr>
<td>9</td>
<td>81</td>
<td>m</td>
<td>peripheral arterial occlusive disease</td>
<td>x</td>
<td></td>
<td></td>
<td>AmoxClav, Clarithromycin, Clindamycin, Ciprofloxacin, PipTaz</td>
<td>None</td>
</tr>
<tr>
<td>10</td>
<td>85</td>
<td>f</td>
<td>sepsis, recurrent erysipelas, recurrent CDI</td>
<td>x</td>
<td></td>
<td></td>
<td>AmoxClav, Mecopenem, Metronidazole, Vancomycin, AmpSulbactam</td>
<td>PPI</td>
</tr>
</tbody>
</table>

1 PPI = proton pump inhibitors.

Table 4. Treatment, laboratory findings and outcomes of Clostridium difficile infection cases.1,2

<table>
<thead>
<tr>
<th>Case ID</th>
<th>Stool C. difficile positive</th>
<th>Repeated stool C. difficile positive</th>
<th>PCR ribotype</th>
<th>MTZ</th>
<th>Probiotics history</th>
<th>Fever ≥38 °C</th>
<th>Radiography3</th>
<th>Endoscopy</th>
<th>Leucocite count/1000</th>
<th>CRP g/d</th>
<th>Clinical resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y</td>
<td>N</td>
<td>023</td>
<td>Y</td>
<td>SSP</td>
<td></td>
<td>Y</td>
<td>N</td>
<td>17.7</td>
<td>3</td>
<td>complete4</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>N</td>
<td>014</td>
<td>N</td>
<td>N</td>
<td></td>
<td>Y, colon not described</td>
<td>N</td>
<td>8.98</td>
<td>6.4</td>
<td>complete</td>
</tr>
<tr>
<td>3</td>
<td>Y</td>
<td>N</td>
<td>413</td>
<td>Y</td>
<td>N</td>
<td></td>
<td>Y, colon not described</td>
<td>N</td>
<td>4.2</td>
<td>8</td>
<td>complete</td>
</tr>
<tr>
<td>4</td>
<td>Y</td>
<td>N</td>
<td>433</td>
<td>Y</td>
<td>SSP</td>
<td></td>
<td>Y</td>
<td>N</td>
<td>12.66</td>
<td>15.1</td>
<td>complete</td>
</tr>
<tr>
<td>5</td>
<td>Y</td>
<td>N</td>
<td>014</td>
<td>Y</td>
<td>MSP</td>
<td></td>
<td>Y, CT: known radiogenic colitis</td>
<td>Y, aborted, bleeding and stenosis</td>
<td>11.4</td>
<td>20.3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Y</td>
<td>N</td>
<td>nd</td>
<td>Y</td>
<td>SSP</td>
<td></td>
<td>Y, colon not described</td>
<td>Y, no sign of enteritis</td>
<td>10.46</td>
<td>6.8</td>
<td>complete</td>
</tr>
<tr>
<td>7</td>
<td>Y</td>
<td>N</td>
<td>nd</td>
<td>Y</td>
<td>N</td>
<td></td>
<td>N</td>
<td>N</td>
<td>12.11</td>
<td>16.86</td>
<td>complete</td>
</tr>
<tr>
<td>8</td>
<td>Y</td>
<td>N</td>
<td>053</td>
<td>N</td>
<td>N</td>
<td></td>
<td>N</td>
<td>N</td>
<td>18.52</td>
<td>13.2</td>
<td>complete</td>
</tr>
<tr>
<td>9</td>
<td>Y</td>
<td>N</td>
<td>nd</td>
<td>Y</td>
<td>SSP</td>
<td></td>
<td>N</td>
<td>N</td>
<td>25.48</td>
<td>26.2</td>
<td>complete</td>
</tr>
<tr>
<td>10</td>
<td>Y</td>
<td>nd</td>
<td>053</td>
<td>Y</td>
<td>MSP</td>
<td></td>
<td>N</td>
<td>N</td>
<td>13.45</td>
<td>20.9</td>
<td>complete</td>
</tr>
</tbody>
</table>

1 All patients received four times an oral dosage 125 mg vancomycin and twice daily a multistrain probiotic.
2 Abbreviations used: CRP = C-reactive protein; MSP = multistrain probiotic; MTZ = metronidazole; N = no; nd = not done; SSP = single strain probiotic; Y = yes.
3 Radiography with plain film, CT or sonography.
4 Patient died of pneumonia three months later.
Patient 2 (Case 5 in Tables 3 and 4)

An 85 year-old male was admitted to our hospital with a known bladder carcinoma and recurrent CDI with diarrhoea. He had already been tested positive for *C. difficile* in stool specimens one month before, after he had received ceftriaxon, and tested positive again in the stool specimen taken at admission (ribotype 014). The first CDI episode was treated with vancomycin and a multistrain probiotic. The latter was prescribed for sixteen days, however, the patient was discharged from the hospital at day three. At readmission, he was treated first with metronidazole for five days; after consulting an infectious disease specialist, the therapy was switched to vancomycin, combined with a multistrain probiotic anew. Three days later, the patient experienced full clinical resolution.

Patient 3 (Case 8 in Tables 3 and 4)

A 79 year-old male who underwent transcutaneous aortic valve replacement developed endocarditis and was treated with clindamycin and ceftriaxon for one week, then followed by imipenem and moxifloxacin for 2 weeks. No diarrhoea was documented during this period nor stool samples were taken. One month later, after continuously receiving moxifloxacin, he was readmitted with CDI, reporting diarrhoea at home for already two weeks. He tested positive for *C. difficile* (ribotype 053) in the stool specimen taken at admission and was treated with vancomycin and a multistrain probiotic. Five days later, the patient experienced full clinical resolution.

Treatment and outcomes

All patients under survey received 4× 125 mg oral vancomycin and 2× the multistrain probiotic. Five patients suffered from recurrent CDI. Complete resolution of clinical presentation occurred in 9 patients (90%), and one of the observed subjects died within a 3-months follow-up period from pneumonia, apparently without a connection to the CDI episodes. No adverse events were reported. A repeated stool testing was performed in 9 out of 10 patients and these proofed to be negative. Molecular characterisation of the strains was done in 70% (7 out of 10); PCR-ribotyping revealed thereby 5 different strains (2× 014, 2× 053 and one of each 023, 433, 413) (Table 4). No clustering or transmission was seen among the investigated patients.

Data from our surveillance system indicated 9 fatal courses directly related to CDI out of 151 cases (case-fatality ratio 6%) during the observation period. 84 of the observed patients were males; the mean age was 67 (range 19-94). None of the fatal cases had a documented treatment with probiotics.

6. Discussion

Stool microbiota is best understood as a complex, living, interdependent ecosystem. During periods of health, bacterial gut residents suppress growth of *C. difficile* in the colon. Broad-spectrum antimicrobials have the potential to disrupt the balanced ecology of the stool microbiota, creating an opportunity for *C. difficile* spores to germinate resulting in overgrowth and attendant production of toxins, which are responsible for most of the clinical symptoms of CDI and (pseudomembranous)-colitis. Antibiotics like clindamycin are known to impair colonisation resistance, however, second- and third-generation cephalosporins (for which all clinical isolates of *C. difficile* are resistant) and fluoroquinolones are frequently used in hospital infections/patients and cause iatrogenic CDI (Kelly, 2009). Patients can keep shedding (bacteria, toxins and spores) for some weeks despite full clinical recovery. Those asymptomatic carriers emphasise the need for transmission reduction and universal infection control measures. Using gloves for avoiding direct skin contact and hand hygiene with plain soap and running water to remove spores followed by an alcoholic hand rub is preferred over alcohol-based hand rubs alone for symptomatic patients or patients with a recent known CDI-episode. To reduce the environmental burden, spores should be removed with sporicidal agents (chlorine) on surfaces adjacent to the patients, as well as for toilets and showers (Kelly 2009). Detergents based on peroxides or glutaraldehyde are also effective (Tschudin-Sutter, 2012). The fundamental problem in CDI is not the presence of the pathogenic organism per se, but the absence of healthy microbiota to keep the growth of the pathogen suppressed. Accordingly, one would anticipate that the restoration of bacterial homeostasis in the colon could resolve diarrhoea states caused by uncontrolled growth of *C. difficile*.

C. difficile is a leading cause of AAD. The severity of CDI ranges from mild cases, which require little more than the discontinuation of antimicrobials to intractable diarrhoea, to relapsing infection and severe life-threatening illness. Mortality/fatality rates as high as 26% have been reported in old and very old patients, and patients with underlying disease like progressive solid tumours. Especially haematology-oncology patients, having systemic diseases and receiving high dose chemotherapy, are at risk for CDI (Hautmann et al., 2011). Both the recurrence and overgrowth after initial dysbiosis can be partly explained by spore forming ability, specific adhesions in the colon and hypervirulent strains via additional production of a binary toxin. The cost per case ranges from approx. 2,500 USD (total cost estimate 3.5 billion) to 4,000 USD in the UK (Hickson, 2011), with health care system costs between 5,000 (USA) and 8,000 (EU) USD per primary episode and almost 14,000 USD for a case of recurrent CDI (Hautmann et al., 2011) with a total burden worldwide in the tens of...
billions. All available data show that CDI is much more difficult to prevent and cure than ordinary diarrhoea. In addition, the spore forming ability results in enormous recurrence rates.

Recent meta-analysis on CDI treatment successes (Johnston et al., 2012) in faecal transplantation in CDI therapy (Brandt, 2012; Van Nood et al., 2013) and this case series shows that even in patients at high risk, with multiple severe underlying diseases, administration of multistain probiotics might be beneficial by shortening the diseases course as well as by preventing further relapses in patients with recurrent CDI. Furthermore, this paper presents a theoretical and practical basis to initiate well-designed clinical trials (Morrow et al., 2012) to evaluate multistain probiotic treatment in CDI patient groups with different underlying diseases.

Acknowledgements

We would like to thank the heads of the different clinical departments at the University Hospital Salzburg, Paracelsus Medical University for their support with clinical data. The authors wish to thank Joop van Orsouw for preparing the figures and Saskia van Hemert (Winclowe) for guidance. No financial conflicts of interest are declared for this study.

References

Louie, T.J., Cannon, K., Byrne, B., Emery, J., Ward, L., Eyben, M. and Krulicki, W., 2012. Fidaxomicin preserves the intestinal microbiome during and after treatment of *Clostridium difficile* infection (CDI) and reduces both toxin reexpression and recurrence of CDI. Clinical Infectious Diseases 55 Suppl. 2: S132-142.

